add tiny expression library and make it a dice expression parser

Use tiny expression library (from Github) and expand it to provide
dice expression parsing. This needs more testing obviously.
This commit is contained in:
Florian Stinglmayr 2018-02-17 10:52:46 +01:00
parent 25227d5c6c
commit 92b909158c
9 changed files with 853 additions and 6 deletions

View File

@ -5,7 +5,8 @@ lib_LTLIBRARIES = libdice.la
libdice_la_SOURCES = lib/dice_lexer.l \
lib/dice_parse.y \
lib/dice.h \
lib/dice.c
lib/dice.c \
lib/diceexpr.c
AM_CFLAGS = -Ilib

View File

@ -18,4 +18,8 @@ AC_CHECK_FUNCS([arc4random arc4random_uniform strlcat strlcpy],,
AC_CONFIG_FILES([Makefile tests/Makefile])
AC_SEARCH_LIBS([cos], [m], [], [
AC_MSG_ERROR([unable to find the cos() function])
])
AC_OUTPUT

View File

@ -8,7 +8,7 @@
#include <bsd/stdlib.h>
#endif
extern int yylex_init(void **state);
extern int yylex_init_extra(void *extra, void **state);
extern int yylex_destroy(void *state);
extern void yylex(void *state);
extern void yy_switch_to_buffer(void *buffer, void *scanner);
@ -22,7 +22,7 @@ struct dice_
uint32_t amount;
uint32_t sides;
char *errmsg;
char *error;
};
static dice_t dice_new(void)
@ -42,6 +42,7 @@ void dice_free(dice_t t)
return;
}
free(t->error);
free(t);
}
@ -93,7 +94,7 @@ dice_t dice_parse(char const *s)
return NULL;
}
yylex_init(&scanner);
yylex_init_extra(d, &scanner);
buffer = yy_scan_string(s, scanner);
yy_switch_to_buffer(buffer, scanner);
@ -118,6 +119,12 @@ bool dice_set(dice_t d, dice_option_t opt, ...)
switch (opt) {
case DICEOPTION_AMOUNT: d->amount = va_arg(lst, uint32_t); break;
case DICEOPTION_SIDES: d->sides = va_arg(lst, uint32_t); break;
case DICEOPTION_ERROR:
{
char const *err = va_arg(lst, char const *);
free(d->error);
d->error = strdup(err);
} break;
default: return false;
}
@ -144,6 +151,12 @@ bool dice_get(dice_t d, dice_option_t opt, ...)
*ptr = d->sides;
} break;
case DICEOPTION_ERROR:
{
char **ptr = va_arg(lst, char **);
*ptr = d->error;
} break;
default: return false;
}
va_end(lst);
@ -189,7 +202,16 @@ bool dice_evaluate(dice_t d, dice_result_t **res, size_t *reslen)
return true;
}
void dice_update_consumned(dice_t d, int offset)
void dice_update_consumed(dice_t d, int offset)
{
d->consumed += offset;
}
int dice_consumed(dice_t d)
{
if (d == NULL) {
return 0;
}
return d->consumed;
}

View File

@ -9,6 +9,9 @@
struct dice_;
typedef struct dice_ * dice_t;
struct dice_expression_;
typedef struct dice_expression_ * dice_expression_t;
typedef struct {
int64_t result;
} dice_result_t;
@ -16,6 +19,7 @@ typedef struct {
typedef enum {
DICEOPTION_AMOUNT = 0,
DICEOPTION_SIDES,
DICEOPTION_ERROR,
} dice_option_t;
void dice_result_free(dice_result_t *r);
@ -31,4 +35,9 @@ bool dice_get(dice_t d, dice_option_t opt, ...);
int64_t dice_roll(dice_t d);
bool dice_evaluate(dice_t d, dice_result_t **res, size_t *reslen);
dice_expression_t dice_expression_parse(char const *s, int *error);
void dice_expression_free(dice_expression_t e);
bool dice_expression_evaluate(dice_expression_t e, int64_t *result);
bool dice_expression_print(dice_expression_t e);
#endif

View File

@ -5,15 +5,21 @@
#include "dice.h"
#include "dice_parse.h"
extern void dice_update_consumed(dice_t d, int off);
%}
%%
[0-9]+ {
dice_t d = yyget_extra(yyscanner);
dice_update_consumed(d, yyleng);
yylval->integer = atoi(yytext);
return TOK_INTEGER;
}
[d] {
dice_t d = yyget_extra(yyscanner);
dice_update_consumed(d, yyleng);
return TOK_DICESEP;
}
%%

View File

@ -10,6 +10,7 @@ extern int yylex(void *lval, void *scanner);
void yyerror(void *scanner, dice_t dice, char const *err)
{
dice_set(dice, DICEOPTION_ERROR, err);
}
int yywrap(void)
@ -33,10 +34,14 @@ dice: TOK_INTEGER TOK_DICESEP TOK_INTEGER
{
dice_set(dice, DICEOPTION_AMOUNT, $1);
dice_set(dice, DICEOPTION_SIDES, $3);
YYACCEPT;
}
| TOK_DICESEP TOK_INTEGER
{
dice_set(dice, DICEOPTION_AMOUNT, 1);
dice_set(dice, DICEOPTION_SIDES, $2);
YYACCEPT;
}
;

771
lib/diceexpr.c Normal file
View File

@ -0,0 +1,771 @@
/*
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
*
* Copyright (c) 2015, 2016 Lewis Van Winkle
*
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/* COMPILE TIME OPTIONS */
/* Exponentiation associativity:
For a^b^c = (a^b)^c and -a^b = (-a)^b do nothing.
For a^b^c = a^(b^c) and -a^b = -(a^b) uncomment the next line.*/
#define TE_POW_FROM_RIGHT
/* Logarithms
For log = base 10 log do nothing
For log = natural log uncomment the next line. */
/* #define TE_NAT_LOG */
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#include <ctype.h>
#include "dice.h"
#ifndef NAN
#define NAN (0.0/0.0)
#endif
#ifndef INFINITY
#define INFINITY (1.0/0.0)
#endif
extern int dice_consumed(dice_t d);
typedef struct te_expr {
int type;
union {
double value;
const double *bound;
const void *function;
dice_t dice;
};
void *parameters[1];
} te_expr;
enum {
TE_VARIABLE = 0, TE_DICE = 2,
TE_FUNCTION0 = 8, TE_FUNCTION1, TE_FUNCTION2, TE_FUNCTION3,
TE_FUNCTION4, TE_FUNCTION5, TE_FUNCTION6, TE_FUNCTION7,
TE_CLOSURE0 = 16, TE_CLOSURE1, TE_CLOSURE2, TE_CLOSURE3,
TE_CLOSURE4, TE_CLOSURE5, TE_CLOSURE6, TE_CLOSURE7,
TE_FLAG_PURE = 64,
};
typedef struct te_variable {
const char *name;
const void *address;
int type;
void *context;
} te_variable;
typedef double (*te_fun2)(double, double);
enum {
TOK_NULL = TE_CLOSURE7+1, TOK_ERROR, TOK_END, TOK_SEP,
TOK_OPEN, TOK_CLOSE, TOK_NUMBER, TOK_VARIABLE, TOK_INFIX, TOK_DICE,
};
enum {TE_CONSTANT = 1};
typedef struct state {
const char *start;
const char *next;
int type;
union {
double value;
const double *bound;
const void *function;
dice_t dice;
};
void *context;
const te_variable *lookup;
int lookup_len;
} state;
static void te_free(te_expr *);
#define TYPE_MASK(TYPE) ((TYPE)&0x0000003F)
#define IS_PURE(TYPE) (((TYPE) & TE_FLAG_PURE) != 0)
#define IS_FUNCTION(TYPE) (((TYPE) & TE_FUNCTION0) != 0)
#define IS_CLOSURE(TYPE) (((TYPE) & TE_CLOSURE0) != 0)
#define ARITY(TYPE) ( ((TYPE) & (TE_FUNCTION0 | TE_CLOSURE0)) ? ((TYPE) & 0x00000007) : 0 )
#define NEW_EXPR(type, ...) new_expr((type), (const te_expr*[]){__VA_ARGS__})
static te_expr *new_expr(const int type, const te_expr *parameters[]) {
const int arity = ARITY(type);
const int psize = sizeof(void*) * arity;
const int size = (sizeof(te_expr) - sizeof(void*)) + psize + (IS_CLOSURE(type) ? sizeof(void*) : 0);
te_expr *ret = malloc(size);
memset(ret, 0, size);
if (arity && parameters) {
memcpy(ret->parameters, parameters, psize);
}
ret->type = type;
ret->bound = 0;
return ret;
}
static void te_free_parameters(te_expr *n) {
if (!n) return;
switch (TYPE_MASK(n->type)) {
case TE_FUNCTION7: case TE_CLOSURE7: te_free(n->parameters[6]);
case TE_FUNCTION6: case TE_CLOSURE6: te_free(n->parameters[5]);
case TE_FUNCTION5: case TE_CLOSURE5: te_free(n->parameters[4]);
case TE_FUNCTION4: case TE_CLOSURE4: te_free(n->parameters[3]);
case TE_FUNCTION3: case TE_CLOSURE3: te_free(n->parameters[2]);
case TE_FUNCTION2: case TE_CLOSURE2: te_free(n->parameters[1]);
case TE_FUNCTION1: case TE_CLOSURE1: te_free(n->parameters[0]);
}
if (TYPE_MASK(n->type) == TE_DICE) {
dice_free(n->dice);
}
}
static void te_free(te_expr *n) {
if (!n) return;
te_free_parameters(n);
free(n);
}
static double pi() {return 3.14159265358979323846;}
static double e() {return 2.71828182845904523536;}
static double fac(double a) {/* simplest version of fac */
if (a < 0.0)
return NAN;
if (a > UINT_MAX)
return INFINITY;
unsigned int ua = (unsigned int)(a);
unsigned long int result = 1, i;
for (i = 1; i <= ua; i++) {
if (i > ULONG_MAX / result)
return INFINITY;
result *= i;
}
return (double)result;
}
static double ncr(double n, double r) {
if (n < 0.0 || r < 0.0 || n < r) return NAN;
if (n > UINT_MAX || r > UINT_MAX) return INFINITY;
unsigned long int un = (unsigned int)(n), ur = (unsigned int)(r), i;
unsigned long int result = 1;
if (ur > un / 2) ur = un - ur;
for (i = 1; i <= ur; i++) {
if (result > ULONG_MAX / (un - ur + i))
return INFINITY;
result *= un - ur + i;
result /= i;
}
return result;
}
static double npr(double n, double r) {return ncr(n, r) * fac(r);}
static const te_variable functions[] = {
/* must be in alphabetical order */
{"abs", fabs, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"acos", acos, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"asin", asin, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"atan", atan, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"atan2", atan2, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"ceil", ceil, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"cos", cos, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"cosh", cosh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"e", e, TE_FUNCTION0 | TE_FLAG_PURE, 0},
{"exp", exp, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"fac", fac, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"floor", floor, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"ln", log, TE_FUNCTION1 | TE_FLAG_PURE, 0},
#ifdef TE_NAT_LOG
{"log", log, TE_FUNCTION1 | TE_FLAG_PURE, 0},
#else
{"log", log10, TE_FUNCTION1 | TE_FLAG_PURE, 0},
#endif
{"log10", log10, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"ncr", ncr, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"npr", npr, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"pi", pi, TE_FUNCTION0 | TE_FLAG_PURE, 0},
{"pow", pow, TE_FUNCTION2 | TE_FLAG_PURE, 0},
{"sin", sin, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"sinh", sinh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"sqrt", sqrt, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"tan", tan, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{"tanh", tanh, TE_FUNCTION1 | TE_FLAG_PURE, 0},
{0, 0, 0, 0}
};
static const te_variable *find_builtin(const char *name, int len) {
int imin = 0;
int imax = sizeof(functions) / sizeof(te_variable) - 2;
/*Binary search.*/
while (imax >= imin) {
const int i = (imin + ((imax-imin)/2));
int c = strncmp(name, functions[i].name, len);
if (!c) c = '\0' - functions[i].name[len];
if (c == 0) {
return functions + i;
} else if (c > 0) {
imin = i + 1;
} else {
imax = i - 1;
}
}
return 0;
}
static const te_variable *find_lookup(const state *s, const char *name, int len) {
int iters;
const te_variable *var;
if (!s->lookup) return 0;
for (var = s->lookup, iters = s->lookup_len; iters; ++var, --iters) {
if (strncmp(name, var->name, len) == 0 && var->name[len] == '\0') {
return var;
}
}
return 0;
}
static double add(double a, double b) {return a + b;}
static double sub(double a, double b) {return a - b;}
static double mul(double a, double b) {return a * b;}
static double divide(double a, double b) {return a / b;}
static double negate(double a) {return -a;}
static double comma(double a, double b) {(void)a; return b;}
void next_token(state *s) {
s->type = TOK_NULL;
do {
if (!*s->next){
s->type = TOK_END;
return;
}
if (isdigit(s->next[0]) || s->next[0] == '.' || s->next[0] == 'd') {
/* first try reading a dice expression, if that fails, we go
back to trying a number instead */
dice_t d = dice_parse(s->next);
if (d != NULL) {
int consumed = dice_consumed(d);
s->type = TOK_DICE;
s->dice = d;
s->next += consumed;
} else if (d == NULL) {
/* Try reading a number. */
s->value = strtod(s->next, (char**)&s->next);
s->type = TOK_NUMBER;
}
} else {
/* Look for a variable or builtin function call. */
if (s->next[0] >= 'a' && s->next[0] <= 'z') {
const char *start;
start = s->next;
while ((s->next[0] >= 'a' && s->next[0] <= 'z') || (s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_')) s->next++;
const te_variable *var = find_lookup(s, start, s->next - start);
if (!var) var = find_builtin(start, s->next - start);
if (!var) {
s->type = TOK_ERROR;
} else {
switch(TYPE_MASK(var->type))
{
case TE_VARIABLE:
s->type = TOK_VARIABLE;
s->bound = var->address;
break;
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
s->context = var->context;
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
s->type = var->type;
s->function = var->address;
break;
}
}
} else {
/* Look for an operator or special character. */
switch (s->next++[0]) {
case '+': s->type = TOK_INFIX; s->function = add; break;
case '-': s->type = TOK_INFIX; s->function = sub; break;
case '*': s->type = TOK_INFIX; s->function = mul; break;
case '/': s->type = TOK_INFIX; s->function = divide; break;
case '^': s->type = TOK_INFIX; s->function = pow; break;
case '%': s->type = TOK_INFIX; s->function = fmod; break;
case '(': s->type = TOK_OPEN; break;
case ')': s->type = TOK_CLOSE; break;
case ',': s->type = TOK_SEP; break;
case ' ': case '\t': case '\n': case '\r': break;
default: s->type = TOK_ERROR; break;
}
}
}
} while (s->type == TOK_NULL);
}
static te_expr *list(state *s);
static te_expr *expr(state *s);
static te_expr *power(state *s);
static te_expr *base(state *s) {
/* <base> = <constant> | <variable> | <function-0> {"(" ")"} | <function-1> <power> | <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
te_expr *ret;
int arity;
switch (TYPE_MASK(s->type)) {
case TOK_NUMBER:
ret = new_expr(TE_CONSTANT, 0);
ret->value = s->value;
next_token(s);
break;
case TOK_VARIABLE:
ret = new_expr(TE_VARIABLE, 0);
ret->bound = s->bound;
next_token(s);
break;
case TOK_DICE:
ret = new_expr(TE_DICE, 0);
ret->dice = s->dice;
next_token(s);
break;
case TE_FUNCTION0:
case TE_CLOSURE0:
ret = new_expr(s->type, 0);
ret->function = s->function;
if (IS_CLOSURE(s->type)) ret->parameters[0] = s->context;
next_token(s);
if (s->type == TOK_OPEN) {
next_token(s);
if (s->type != TOK_CLOSE) {
s->type = TOK_ERROR;
} else {
next_token(s);
}
}
break;
case TE_FUNCTION1:
case TE_CLOSURE1:
ret = new_expr(s->type, 0);
ret->function = s->function;
if (IS_CLOSURE(s->type)) ret->parameters[1] = s->context;
next_token(s);
ret->parameters[0] = power(s);
break;
case TE_FUNCTION2: case TE_FUNCTION3: case TE_FUNCTION4:
case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
case TE_CLOSURE2: case TE_CLOSURE3: case TE_CLOSURE4:
case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
arity = ARITY(s->type);
ret = new_expr(s->type, 0);
ret->function = s->function;
if (IS_CLOSURE(s->type)) ret->parameters[arity] = s->context;
next_token(s);
if (s->type != TOK_OPEN) {
s->type = TOK_ERROR;
} else {
int i;
for(i = 0; i < arity; i++) {
next_token(s);
ret->parameters[i] = expr(s);
if(s->type != TOK_SEP) {
break;
}
}
if(s->type != TOK_CLOSE || i != arity - 1) {
s->type = TOK_ERROR;
} else {
next_token(s);
}
}
break;
case TOK_OPEN:
next_token(s);
ret = list(s);
if (s->type != TOK_CLOSE) {
s->type = TOK_ERROR;
} else {
next_token(s);
}
break;
default:
ret = new_expr(0, 0);
s->type = TOK_ERROR;
ret->value = NAN;
break;
}
return ret;
}
static te_expr *power(state *s) {
/* <power> = {("-" | "+")} <base> */
int sign = 1;
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
if (s->function == sub) sign = -sign;
next_token(s);
}
te_expr *ret;
if (sign == 1) {
ret = base(s);
} else {
ret = NEW_EXPR(TE_FUNCTION1 | TE_FLAG_PURE, base(s));
ret->function = negate;
}
return ret;
}
#ifdef TE_POW_FROM_RIGHT
static te_expr *factor(state *s) {
/* <factor> = <power> {"^" <power>} */
te_expr *ret = power(s);
int neg = 0;
te_expr *insertion = 0;
if (ret->type == (TE_FUNCTION1 | TE_FLAG_PURE) && ret->function == negate) {
te_expr *se = ret->parameters[0];
free(ret);
ret = se;
neg = 1;
}
while (s->type == TOK_INFIX && (s->function == pow)) {
te_fun2 t = s->function;
next_token(s);
if (insertion) {
/* Make exponentiation go right-to-left. */
te_expr *insert = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, insertion->parameters[1], power(s));
insert->function = t;
insertion->parameters[1] = insert;
insertion = insert;
} else {
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, power(s));
ret->function = t;
insertion = ret;
}
}
if (neg) {
ret = NEW_EXPR(TE_FUNCTION1 | TE_FLAG_PURE, ret);
ret->function = negate;
}
return ret;
}
#else
static te_expr *factor(state *s) {
/* <factor> = <power> {"^" <power>} */
te_expr *ret = power(s);
while (s->type == TOK_INFIX && (s->function == pow)) {
te_fun2 t = s->function;
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, power(s));
ret->function = t;
}
return ret;
}
#endif
static te_expr *term(state *s) {
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
te_expr *ret = factor(s);
while (s->type == TOK_INFIX && (s->function == mul || s->function == divide || s->function == fmod)) {
te_fun2 t = s->function;
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, factor(s));
ret->function = t;
}
return ret;
}
static te_expr *expr(state *s) {
/* <expr> = <term> {("+" | "-") <term>} */
te_expr *ret = term(s);
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
te_fun2 t = s->function;
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, term(s));
ret->function = t;
}
return ret;
}
static te_expr *list(state *s) {
/* <list> = <expr> {"," <expr>} */
te_expr *ret = expr(s);
while (s->type == TOK_SEP) {
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2 | TE_FLAG_PURE, ret, expr(s));
ret->function = comma;
}
return ret;
}
#define TE_FUN(...) ((double(*)(__VA_ARGS__))n->function)
#define M(e) te_eval(n->parameters[e])
double te_eval(const te_expr *n) {
if (!n) return NAN;
switch(TYPE_MASK(n->type)) {
case TE_CONSTANT: return n->value;
case TE_VARIABLE: return *n->bound;
case TE_DICE: return (double)(dice_roll(n->dice) * 1.0);
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
switch(ARITY(n->type)) {
case 0: return TE_FUN(void)();
case 1: return TE_FUN(double)(M(0));
case 2: return TE_FUN(double, double)(M(0), M(1));
case 3: return TE_FUN(double, double, double)(M(0), M(1), M(2));
case 4: return TE_FUN(double, double, double, double)(M(0), M(1), M(2), M(3));
case 5: return TE_FUN(double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4));
case 6: return TE_FUN(double, double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4), M(5));
case 7: return TE_FUN(double, double, double, double, double, double, double)(M(0), M(1), M(2), M(3), M(4), M(5), M(6));
default: return NAN;
}
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
switch(ARITY(n->type)) {
case 0: return TE_FUN(void*)(n->parameters[0]);
case 1: return TE_FUN(void*, double)(n->parameters[1], M(0));
case 2: return TE_FUN(void*, double, double)(n->parameters[2], M(0), M(1));
case 3: return TE_FUN(void*, double, double, double)(n->parameters[3], M(0), M(1), M(2));
case 4: return TE_FUN(void*, double, double, double, double)(n->parameters[4], M(0), M(1), M(2), M(3));
case 5: return TE_FUN(void*, double, double, double, double, double)(n->parameters[5], M(0), M(1), M(2), M(3), M(4));
case 6: return TE_FUN(void*, double, double, double, double, double, double)(n->parameters[6], M(0), M(1), M(2), M(3), M(4), M(5));
case 7: return TE_FUN(void*, double, double, double, double, double, double, double)(n->parameters[7], M(0), M(1), M(2), M(3), M(4), M(5), M(6));
default: return NAN;
}
default: return NAN;
}
}
#undef TE_FUN
#undef M
static void optimize(te_expr *n) {
/* Evaluates as much as possible. */
if (n->type == TE_CONSTANT) return;
if (n->type == TE_VARIABLE) return;
/* Only optimize out functions flagged as pure. */
if (IS_PURE(n->type)) {
const int arity = ARITY(n->type);
int known = 1;
int i;
for (i = 0; i < arity; ++i) {
optimize(n->parameters[i]);
if (((te_expr*)(n->parameters[i]))->type != TE_CONSTANT) {
known = 0;
}
}
if (known) {
const double value = te_eval(n);
te_free_parameters(n);
n->type = TE_CONSTANT;
n->value = value;
}
}
}
static te_expr *te_compile(const char *expression, const te_variable *variables,
int var_count, int *error) {
state s;
s.start = s.next = expression;
s.lookup = variables;
s.lookup_len = var_count;
next_token(&s);
te_expr *root = list(&s);
if (s.type != TOK_END) {
te_free(root);
if (error) {
*error = (s.next - s.start);
if (*error == 0) *error = 1;
}
return 0;
} else {
optimize(root);
if (error) *error = 0;
return root;
}
}
static double te_interp(const char *expression, int *error) {
te_expr *n = te_compile(expression, 0, 0, error);
double ret;
if (n) {
ret = te_eval(n);
te_free(n);
} else {
ret = NAN;
}
return ret;
}
static void pn (const te_expr *n, int depth) {
int i, arity;
printf("%*s", depth, "");
switch(TYPE_MASK(n->type)) {
case TE_CONSTANT: printf("%f\n", n->value); break;
case TE_VARIABLE: printf("bound %p\n", n->bound); break;
case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3:
case TE_FUNCTION4: case TE_FUNCTION5: case TE_FUNCTION6: case TE_FUNCTION7:
case TE_CLOSURE0: case TE_CLOSURE1: case TE_CLOSURE2: case TE_CLOSURE3:
case TE_CLOSURE4: case TE_CLOSURE5: case TE_CLOSURE6: case TE_CLOSURE7:
arity = ARITY(n->type);
printf("f%d", arity);
for(i = 0; i < arity; i++) {
printf(" %p", n->parameters[i]);
}
printf("\n");
for(i = 0; i < arity; i++) {
pn(n->parameters[i], depth + 1);
}
break;
}
}
static void te_print(const te_expr *n) {
pn(n, 0);
}
struct dice_expression_
{
te_expr *expr;
};
void dice_expression_free(dice_expression_t e)
{
if (e == NULL) {
return;
}
te_free(e->expr);
free(e);
}
dice_expression_t dice_expression_parse(char const *n, int *error)
{
dice_expression_t e = NULL;
e = calloc(1, sizeof(struct dice_expression_));
if (e == NULL) {
return NULL;
}
e->expr = te_compile(n, 0, 0, error);
if (e->expr == NULL) {
free(e);
return NULL;
}
return e;
}
bool dice_expression_evaluate(dice_expression_t e, int64_t *result)
{
double val;
if (e == NULL || e->expr == NULL) {
return false;
}
val = te_eval(e->expr);
if (val == NAN) {
return false;
}
*result = (int64_t)trunc(val);
return true;
}
bool dice_expression_print(dice_expression_t e)
{
if (e == NULL || e->expr == NULL) {
return false;
}
te_print(e->expr);
return true;
}

View File

@ -1,6 +1,7 @@
bin_PROGRAMS = test_dice_simple_roll \
test_dice_parse \
test_dice_evaluate
test_dice_evaluate \
test_expr_parse
AM_CFLAGS = -I../lib ${CMOCKA_CFLAGS}
AM_LDFLAGS = ${CMOCKA_LIBS} ../libdice.la

View File

@ -6,6 +6,10 @@
#include <string.h>
#include <stdlib.h>
/* private library function
*/
int dice_consumed(dice_t d);
static void test_dice_parse_none(void **data)
{
dice_t d = dice_parse("");
@ -31,6 +35,8 @@ static void test_dice_parse_amount_sides(void **data)
assert_true(dice_get(d, DICEOPTION_SIDES, &i));
assert_int_equal(i, 10);
assert_int_equal(dice_consumed(d), 4);
dice_free(d);
}
@ -44,6 +50,27 @@ static void test_dice_parse_sides(void **data)
assert_true(dice_get(d, DICEOPTION_SIDES, &i));
assert_int_equal(i, 12);
assert_int_equal(dice_consumed(d), 3);
dice_free(d);
}
static void test_dice_parse_big(void **data)
{
char const *dice_str = "1000d120000";
dice_t d = dice_parse(dice_str);
int i = 0;
assert_non_null(d);
assert_true(dice_get(d, DICEOPTION_SIDES, &i));
assert_int_equal(i, 120000);
assert_true(dice_get(d, DICEOPTION_AMOUNT, &i));
assert_int_equal(i, 1000);
assert_int_equal(dice_consumed(d), strlen(dice_str));
dice_free(d);
}
@ -54,6 +81,7 @@ int main(int ac, char **av)
cmocka_unit_test(test_dice_parse_amount),
cmocka_unit_test(test_dice_parse_amount_sides),
cmocka_unit_test(test_dice_parse_sides),
cmocka_unit_test(test_dice_parse_big),
};
return cmocka_run_group_tests(tests, NULL, NULL);